JOURNAL OF NEUROLOGY AND PSYCHOLOGY RESEARCH

REVIEW ARTICLE Open Access

The Illusion of Objectivity: How Systematic Reviews in Psychiatry Increasingly Reproduce Existing Power Structures and Pharmaceutical Models — Is Karl Popper Relevant?

Dr. Martin Legind von Bergen*

MD psych. Center for Research in Psychiatric Diagnostics and Treatment, NY Vestergaardsvej 5B, 3500 Vaerelose, Denmark.

Received date: June 25, 2025, Accepted date: June 30, 2025, Published date: July 15, 2025.

Copyright: ©2025 Dr. Martin Legind von Bergen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding Author: Dr. Martin Legind von Bergen, MD psych. Center for Research in Psychiatric Diagnostics and Treatment, NY Vestergaardsvej 5B, 3500 Vaerelose, Denmark.

Abstract

Systematic reviews and meta-analyses are regarded as the highest form of evidence in modern science. However, within psychiatry, they often rest on a foundation marked by structural and methodological bias. These biases stem in part from databases such as PubMed, Embase, and Web of Science, which prioritise high-impact journals with close ties to the pharmaceutical industry. This results in the selection of studies that disproportionately support pharmaceutical models. Sponsored research, in particular, dominates the published landscape and receives excessive weight in reviews and meta-analyses, reinforcing existing power structures and cementing biomedical paradigms.

This article argues for the need for a fundamental rethinking of review methodology, inspired by Karl Popper's principles of falsification. Such an approach would promote critical testing rather than the accumulation of confirmatory evidence and ensure greater pluralism in knowledge synthesis. The article presents proposals for a new methodology, revised database strategies, and strengthened requirements for conflict-of-interest declarations as pathways to restoring integrity and critical reflection in psychiatric reviews.

Introduction

Karl Popper played a crucial role in the scientific legitimization of psychology at a time when both psychology and psychiatry were embedded in a selfreinforcing psychoanalytic theory of the human mind. Today, we are in a similar situation, though it is no longer psychoanalysis that holds the psychiatric diagnostic system and research hostage, but rather the medical and pharmacological model. This situation makes the world-renowned philosopher of science Karl Popper relevant once again. Popper was a strong critic of the metatheoretical framework of psychoanalysis, which was in no way verifiable. He presented his critique of psychoanalysis in 1934 in Logik der Forschung: Zur Erkenntnistheorie der modernen Naturwissenschaft [1], but his ideas only gained broader influence in the post-war period—especially from the 1950s onwards—as his philosophy of science became more widely known. Popper's views began to gain traction in philosophical circles philosophers of science. In the 1950s, his critique was often highlighted in debates about what distinguishes science from pseudoscience. Yet Popper is not only relevant in debates about science versus contribute pseudoscience—he can also to methodological considerations that can be implemented in reviews, based on the principle that "The criterion of the scientific status of a theory is its falsifiability, or refutability, or testability" [2]. This principle should also apply when we work to create an overarching picture through reviews.

Systematic reviews and meta-analyses are regarded today as the gold standard of evidence synthesis and are considered to represent the highest level of evidence for guiding clinical decisions and developing practice guidelines. However, these methods often rest on a foundation marked by significant bias, both as a result of methodological choices and structural distortions in the databases used for literature searches. Behind these challenges lie deeper problems linked to economic interests—particularly industry-sponsored studies and other industry-generated biases—that collectively have distorted psychiatric research to such a degree that producing scientifically robust reviews has become increasingly difficult.

Literature reviews play a crucial role in providing an overview of research fields and interdisciplinary connections. They serve as an important tool for synthesizing research findings, documenting evidence at the meta level and identifying areas where further research is needed—an essential part of developing theoretical frameworks and conceptual models.

Comprehensive guidelines already exist for conducting literature reviews, describing different types of reviews, including narrative and integrative reviews [3,4] systematic reviews and meta-analyses [5-7] and integrative reviews [8]

Naturally, avoiding bias is central to all research, and various tools and standards have been developed with the aim of reducing it. Among these are Grading of Recommendations, Assessment, Development and Evaluation (GRADE) [9] and the Cochrane Risk of Bias Tool [10].

Nevertheless, the methods used in systematic reviews and meta-analyses are often based on searches in databases such as PubMed, Embase, PsycINFO, and Web of Science. These databases were developed to facilitate access to scientific literature, but their structure and selection criteria contain inherent biases. Search strategies thus tend to favour studies published in high-impact journals, English-language publications, and research from high-income countries11,12. These priorities do not necessarily reflect scientific quality but often rather prestige, network structures, and commercial interests that shape the publication system.

"There has been a marked shift from research being conducted in public institutions and academic settings to industry increasingly taking over the organisation of clinical trials in the past decade. At present, most trials are funded by industry. (...) Studies show that industry-sponsored research is strongly associated with results favouring the experimental therapy, raising concerns about sponsorship bias and quality issues in the

outcomes of clinical trials" [13].

The same article points out that 64% of senior editorial board members received payments from the pharmaceutical industry between 2013 and 201613. Furthermore, a more recent study has identified significant undeclared financial conflicts of interest among the top 10 recipients of payments in leading psychiatric journals. These findings highlight potential risks to the transparency and integrity of research. Further research is needed to assess the effectiveness of disclosure policies and to develop mechanisms to mitigate conflicts of interest in psychiatric research [14].

Problems with payments from the pharmaceutical industry are also seen among researchers. A new study shows that it is especially the most prominent psychiatrists who receive the largest share of the funds—amounting to \$357,971,774 [15].

Studies document extensive financial ties between peer reviewers and the pharmaceutical industry [16-17], enabling the industry to exert significant control over publications in international journals. These studies also highlight that journals' reliance on self-declaration means undisclosed conflicts of interest often remain hidden [16-17]. This gives the pharmaceutical industry considerable influence over what is published.

Even in the development of the DSM, clear connections to the pharmaceutical industry are evident. A study of the 170 members of the DSM-IV panel found that 56% had one or more financial ties to the pharmaceutical industry¹⁸. Among the members who worked on the criteria for depression and schizophrenia, all had financial ties to industry, and for anxiety and eating disorders, the figure was 80%. Of the 20 members who developed the clinical guidelines for DSM-IV, 18 (90%) had at least one financial tie to industry.

The most common types of conflicts of interest

included:

- 77.7% received research funding,
- 72.2% engaged in consultancy work for the industry,
- 44.4% sat on boards of pharmaceutical companies,
- 44.4% participated in industry-funded studies [19].

For DSM-5, approximately 68% of the working group members reported ties to the pharmaceutical industry, representing a 20% increase compared to the DSM-IV panel [19, 20] (Cosgrove, 2009; 2010). A more recent analysis showed that around 60% of DSM-5-TR panel members received payments from the industry [21]. Even the U.S. FDA's drug approval process has been documented as influenced by industry [22].

"Academic medical institutions are increasingly dependent on industry. Some institutions have entered into partnerships with pharmaceutical companies to establish research centres and training programmes where students and faculty members effectively carry out the industry's research. The concept of 'technology transfer' became part of the vocabulary in 1980 with the adoption of federal legislation that encouraged academic institutions receiving public funds to patent and license new inventions and share royalties with the researchers" [23].

The pharmaceutical industry's influence on the DSM has led to the lowering of criteria for many diagnoses. On one hand, this has caused a dramatic increase in the use of psychotropic medications; on the other hand, it has made psychiatric diagnoses more difficult to apply in scientific contexts. The diagnoses today overlap much more than before, and the normal range is gradually disappearing [13-32].

One of the greatest problems in modern research is sponsored research. This could be addressed if the funds that the pharmaceutical industry currently uses for sponsored research were instead channelled through public research institutions, which could distribute the funds to independent research free from industry influence.

Sponsored research consistently yields results that are more favourable to the pharmaceutical industry than those seen in independent research. Since the majority of published articles today originate from sponsored research, the bias in the scientific literature is therefore significant. It is — unsurprisingly — well documented that financial support from the pharmaceutical industry affects many aspects of the design, execution, and reporting of drug trials and often leads to conclusions favourable to the sponsor. Studies have shown that industry-sponsored reports are up to five times more

likely to favour the company's product compared to independently published data [33-42]. Furthermore, studies suggest that up to 75% of all health science research is sponsored by the pharmaceutical industry [41-48].

For this reason, sponsored research should be weighted in a way that reflects this distorting effect — for example, at no more than one-fifth the weight of independent research. If we account for the fact that some researchers fail to declare their income from the pharmaceutical industry, the weighting of sponsored research should be even lower. Sponsored research should not be entirely excluded, as good and valuable studies also exist among these.

When we examine the methods used to reduce bias in reviews, it becomes clear that modern approaches — despite good intentions — are often associated with significant problems. A review can broadly be described as a more or less systematic method for collecting and synthesising prior research [40]. By integrating results and perspectives from many empirical studies, a review can shed light on and answer research questions with a strength that no single study can achieve. In addition, reviews can help reassess conclusions from individual studies that may be flawed because they do not build on

results from other studies or adjacent research areas.

The problem is that the methods implicitly favour research findings and articles that are frequently repeated or cited. This could in principle strengthen the evidence base if repetition reflected independent replication and genuine consensus. But particularly within psychiatry, where sponsored research dominates the published literature [47], the picture is distorted. In such cases, it is often industry-funded studies that are repeated, cited most frequently, and included in guidelines³¹. This creates a self-reinforcing effect, where sponsored research gains disproportionate weight in reviews and meta-analyses, which on the surface appear systematic and objective. In practice, this means that the conclusions of these syntheses risk resting heavily on a distorted evidence base, where bias is hidden by the structure of the method [11].

This structural favouring of certain types of research contributes to cementing pharmaceutical and diagnostic models that instead ought to be subjected to critical scrutiny. At the same time, the likelihood that alternative or independent research findings will achieve real impact in the scientific synthesis is reduced [12].

In this way, a protective ring has been drawn around the entire psychiatric field — both in terms of research and treatment — which in academic contexts means that we must set clear and firm demands for reform. Only in this way can we once again establish the foundation for scientifically robust investigations. A natural place to begin this work is to reconsider how we approach reviews under current conditions — if it is possible at all.

The challenges we face today are largely due to the influence of the pharmaceutical industry, but also to bias arising from other causes within research. Together, these factors have created a research landscape where independent and critical knowledge struggles to break through — with major implications for how we design

and write reviews.

Structural Bias in Databases

Databases such as PubMed, Embase, PsycINFO, and Web of Science prioritise studies published in high-impact journals. These journals often have close ties to industry — either directly through funding or indirectly via advertising models, sponsored supplements, etc. Studies from low- and middle-income countries, non-English-language publications, or independent research environments are similarly underrepresented. This means that the evidence base for a review is already shaped by systematic bias from the outset. To address these biases, sponsored research should at minimum be weighted 1/5 relative to non-sponsored research. Whether this weighting is applied may depend on the specific articles selected for the review.

Citation Bias and Self-Reinforcing Research

Reviews that emphasise citation frequency risk reproducing dominant narratives rather than challenging them. Sponsored studies are cited more frequently — both because they are more actively distributed and because they appear in guidelines and consensus reports shaped by the same structures.

Publication Bias and the Invisible Material

Reviews are typically based on published data, but many neutral or negative studies remain unpublished (the file drawer problem). This is particularly well-documented in psychiatric research, where published and unpublished results often differ [46].

Bias in Search Strategy

Even systematic reviews reflect subjective choices: which databases, search terms, and inclusion/exclusion criteria are used. These choices are rarely transparent enough for precise replication and can mask bias in selection itself.

Sponsorship Bias in the Review Process

Many so-called systematic reviews receive support from stakeholders with an interest in the conclusions — including the pharmaceutical industry. Sponsorship bias can influence everything from the research question to data interpretation.

The Superficial Objectivity of the Method

The systematic method creates an illusion of objectivity through standardised search strategies and protocols. But the method does not protect against the bias embedded in the structural distortions of the research landscape.

Exclusion of Alternative Forms of Knowledge

Reviews often overlook qualitative studies, case reports, ethnographic analyses, and historical perspectives that could provide a more nuanced understanding of psychiatric phenomena. This contributes to an artificial consensus around biomedical models.

Search Engines, Databases, and Bias in Different Types of Reviews

The choice of literature in reviews increasingly depends on databases whose structural priorities have significant consequences:

- Narrative reviews: The risk of selection and confirmation bias is reinforced as unstructured searches are often guided by visibility rather than relevance [7, 2, 4].
- Integrative reviews: Database biases undermine the potential for interdisciplinarity, as qualitative studies, small-scale studies, and negative findings are difficult to identify [21].

- **Systematic reviews:** These amplify database and publication bias, creating a false sense of robustness because the method appears objective while bias shifts from author to system [7].
- Meta-analyses: These inherit all the above biases and amplify them by quantifying effect sizes [48], giving structural distortions and sponsorship bias maximum impact.

Altogether, the use of databases creates a hidden selection structure that shapes conclusions and reproduces existing power relations. This hampers the pluralism and critical evidence assessment that should characterise high-quality research.

A Popper-Inspired Model for Reviews

We should rethink our approach to reviews by shifting focus from the accumulation of confirming evidence to the critical testing of hypotheses.

Why can Popper inspire new models?

Because current practice often:

- Accumulates confirming evidence without attempting to refute hypotheses.
- Overlooks negative results (publication bias).
- Reproduces dominant paradigms rather than testing them critically.

Popper's approach could lead to:

- Reviews that explicitly focus on testing theories through negative findings.
- Protocols that require active searching for disconfirming evidence.
- More pluralistic and open reviews where alternative hypotheses are included.

Concrete elements in a new review structure:

- **Inclusion criteria:** Must actively seek both positive, neutral, and negative results.
- Analytical focus: Where, when, and how does the hypothesis fail? Not just where it "works."
- **Discussion:** Focus on falsification potential rather than consensus.

Revised Database Strategies

- Multilingual and multinational searches: Requirement to include non-English studies and databases from lowand middle-income countries.
- Grey literature: Mandatory search in grey literature to reduce publication bias.
- Negative search strategy: Requirement to use search terms aimed at negative and neutral findings.
- Declaration of search choices: Authors must justify their choice of databases and sources to ensure transparency.

Strengthened COI Declaration Requirements

- Full COI disclosure for all authors (including consulting, ownership, payments within the last 5 years).
- COI declaration from peer reviewers and editors.
- Weighting rule in analysis: Explanation of how COIs in included studies influenced the synthesis.
- Independence requirement: Lead author must not have received industry funding related to the topic within the last 3 years.

Reviews are the link between research and existing knowledge and a foundation for all academic activity, regardless of discipline. It should therefore be a priority for all researchers to perform this task as precisely and critically as possible. However, this task has become increasingly complex — and in psychiatric research, almost impossible.

By rethinking our approach to reviews — inspired by Popper — we can restore a critical and pluralistic synthesis of knowledge in psychiatry and other research areas where industry influence today distorts the evidence base.

References

- Popper, K. (1934). Logik der Forschung: Zur Erkenntnistheorie der modernen Naturwissenschaft. Wien: Julius Springer.
- 2. Popper, K. (1959). The Logic of Scientific Discovery. London: Hutchinson.
- Baumeister, R. F., & Leary, M. R. (1997).
 Writing Narrative Literature Reviews. Review of General Psychology, 1(3), 311-320.
 https://doi.org/10.1037/1089-2680.1.3.311
 (Original work published 1997)
- Wong, G., Greenhalgh, T., Westhorp, G. et al. RAMESES publication standards: metanarrative reviews. BMC Med 11, 20 (2013). https://doi.org/10.1186/1741-7015-11-20
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009 Jul 21;339: b2700.
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul 21;6(7): e1000097. doi:10.1371/journal.pmed.1000097. Epub
 - doi:10.1371/journal.pmed.1000097. Epub 2009 Jul 21
- Davis J, Mengersen K, Bennett S, Mazerolle L. Viewing systematic reviews and metaanalysis in social research through different lenses. Springerplus. 2014 Sep 10;3: 511.
- 8. Torraco, R. J. (2005). Writing Integrative Literature Reviews: Guidelines and Examples.

- Human Resource Development Review, 4(3), 356-367.
- https://doi.org/10.1177/1534484305278283 (Original work published 2005)
- Guyatt G.H., Oxman AD, Montori V, Vist G, Kunz R, Brozek J, Alonso-Coello P, Djulbegovic B, Atkins D, Falck-Ytter Y, Williams JW Jr, Meerpohl J, Norris SL, Akl EA, Schünemann HJ. GRADE guidelines: 5. Rating the quality of evidence--publication bias. J Clin Epidemiol. 2011 Dec;64(12):1277-82.
- Flemyng E., Moore TH, Boutron I, Higgins JP, Hróbjartsson A, Nejstgaard CH, Dwan K. Using Risk of Bias 2 to assess results from randomised controlled trials: guidance from Cochrane. BMJ Evid Based Med. 2023 Aug;28(4):260-266. doi: 10.1136/bmjebm-2022-112102. Epub 2023 Jan 24. PMID: 36693715.
- 11. Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.
 - https://doi.org/10.1371/journal.pmed.0020124
- Kirk, S. A., & Kutchins, H. (1992). The selling of DSM: The rhetoric of science in psychiatry. New York: Aldine de Gruyter.
- Zhang J. & Yuan Y. Industry-funded clinical trials: Beneficial or harmful?, Clinical Research and Regulatory Affairs, 32:4, 109-112 (2015)
- 14. Gesel, F. & Baraldi, James & Goldhirsh, Jessica & Piper, Brian. (2025). Behind the Paywall: Unreported Financial Conflicts in Eminent Psychiatry Journals. 10.1101/2025.04.07.25325310.
- Havlik J.L., Ososanya L, Tang D, Wahid S, Ross JS, Rhee TG. National Trends in and Concentration of Industry Payments to U.S. Psychiatrists, 2015-2021. Psychiatr Serv. 2025 Feb 1;76(2):210-213.
- 16. Baraldi J.H., Picozzo SA, Arnold JC, Volarich

- K, Gionfriddo MR, Piper BJ. A cross-sectional examination of conflict-of-interest disclosures of physician-authors publishing in high-impact US medical journals. BMJ Open. 2022 Apr 11;12(4): e057598.
- Nguyen D.D., Murayama A, Nguyen AL, Cheng A, Murad L, Satkunasivam R, Wallis CJD. Payments by Drug and Medical Device Manufacturers to US Peer Reviewers of Major Medical Journals. JAMA. 2024 Oct 10;332(17): 1480–2.
- Cosgrove L, Krimsky S, Vijayaraghavan M, Schneider L. Financial tie, s between DSM-IV panel members and the pharmaceutical industry. Psychother Psychosom. 2006;75(3):154-60
- Cosgrove L, Bursztajn HJ, Krimsky S, Anaya M, Walker J. Conflicts of interest and disclosure in the American Psychiatric Association's Clinical Practice Guidelines. Psychother Psychosom. 2009;78: 228–232.
- Cosgrove L., Bursztajn HJ. Pharmaceutical philanthropic shell games. Psychiatr Times. 2010;27(3): 20.
- 21. Davis LC, Diianni AT, Drumheller SR, Elansary NN, D'Ambrozio GN, Herrawi F, Piper BJ, Cosgrove L. Undisclosed financial conflicts of interest in DSM-5-TR: cross sectional analysis. BMJ. 2024 Jan 10;384: e076902. doi: 10.1136/bmj-2023-076902.
- 22. Horton R. Lotronex and the FDA: a fatal erosion of integrity. Lancet. 2001 May 19;357(9268):1544-5.
- 23. Angell M. "Is Academic Medicine for Sale?"
 Book Research Ethics, Edition1st Edition,
 Routledge, Pages 3, eBook
 ISBN9781315244426, 2008
- Carey B. & Harris G. "Psychiatric Group Faces Scrutiny Over Drug Industry Ties" New York Times, July 12, 2008
- 25. Harris G. "Top Psychiatrist Didn't Report Drug Makers' Pay", New York Times, Oct. 3,

- 2008
- 26. Timimi, Sami & Leo, Jonathan. (2009). Rethinking ADHD: From brain to culture.
- Frances A. Opening Pandora's box: The 19 worst suggestions for DSM 5. Psychiatric Times 27: 9. 2010
- 28. Frances, 2013a Frances A. "Stopping the False Epidemic of Adult ADHD". Psychology to Day. April 14, 2016.
- 29. Frances, A. (2013). Saving normal: An insider's revolt against out-of-control psychiatric diagnosis, DSM-5, Big Pharma, and the medicalization of ordinary life. William Morrow & Co.
- 30. Gotzsche, P. C. (2013). Deadly medicines and organised crime: How big pharma has corrupted healthcare. London: Radcliffe.
- 31. Frances A. Essentials of Psychiatric Diagnosis: Revised Edition: Responding to the Challenge of DSM-5®". Routledge, Taylor & Francis Group, 2014
- 32. Gøtzsche P.C. Deadly psychiatry and organised denial. People's Press, 2015.
- 33. Bero L.A. & Rennie D. Influences on the quality of published drug studies. Int J Technol Assess Health Care. 1996 Spring;12(2):209-37
- 34. Als-Nielsen B., Chen W, Gluud C, Kjaergard LL. Association of Funding and Conclusions in Randomized Drug Trials: A Reflection of Treatment Effect or Adverse Events? JAMA. 2003;290(7): 921–928.
- 35. Perlis R.H., Perlis CS, Wu Y, Hwang C, Joseph M, Nierenberg AA. Industry sponsorship and financial conflict of interest in the reporting of clinical trials in psychiatry. Am J Psychiatry. 2005 Oct;162(10): 1957-60.
- 36. Brennan TA, Rothman DJ, Blank L, Blumenthal D, Chimonas SC, Cohen JJ, Goldman J, Kassirer JP, Kimball H, Naughton J, Smelser N. Health industry practices that create conflicts of interest: a policy proposal for academic medical centers. JAMA. 2006

- Jan 25;295(4): 429-33
- 37. Schott G, Pachl H, Ludwig W. The relation between publication bias and clinical trials
- 38. Schott G, Pachl H, Limbach U, Gundert-Remy U, Ludwig W, Lieb K. The financing of drug trials by pharmaceutical companies and its consequences. Part 1: A qualitative, systematic review of the literature on possible influences on the findings, protocols, and quality of drug trials. Dtsch Arztebl Int.;107(16): 279-85. 2010
- 39. Schott G, Pachl H, Limbach U, Gundert-Remy U, Lieb K, Ludwig W. The financing of drug trials by pharmaceutical companies and its consequences: Part 2. A qualitative, systematic review of the literature on possible influences on authorship, access to trial data, and trial registration and publication. Dtsch Arztebl Int. 2010;107(17): 295-301.
- Lundh A., Sismondo S, Lexchin J, Busuioc OA, Bero L. Industry sponsorship and research outcome. Cochrane Database of Systematic Reviews 2012, Issue 12. Art. No.: MR000033.
- 41. DOI: 10.1002/14651858.MR000033.pub2.
- Lundh, A., Lexchin, J., Mintzes, B., Schroll, J. B., and Bero, L. (2017). Industry sponsorship and research outcome. Cochrane Database Syst. Rev. 2, MR000033.
 - doi:10.1002/14651858.MR000033.pub3
- 43. Sismondo S. Epistemic Corruption, the Pharmaceutical Industry, and the Body of Medical Science". Front. Res. Metr. Anal., 08 March

- funding. Z Evid Fortbild Qual Gesundhwes. 2010;104(4): 314-22.
- Bodenheimer T. Uneasy alliance-clinical investigators and the pharmaceutical industry. N Engl J Med 2000; 342: 1539–44
- 45. Lexchin J., Bero LA, Djulbegovic B, Clark O. Pharmaceutical industry sponsorship and research outcome and quality: systematic review. BMJ. 2003 May 31;326(7400):1167-70
- 46. The House of Commons Health Committee, The Influence of the Pharmaceutical Industry, Volume 1. April 5, 2005, p. 55. Available from: http://www.parliament.the-stationery-office.co.uk/pa/cm200405/cmselect/cmhealth/42/42.pdf, accessed 6/08/05.
- Kelly R.E., COHEN LJ, SEMPLE RJ, et al. Relationship between drug company funding and outcomes of clinical psychiatric research. Psychological Medicine. 2006;36(11):1647-1656
- 48. Turner EH, Matthews AM, Linardatos E, Tell RA, Rosenthal R. Selective Publication of Antidepressant Trials and Its Influence on Apparent Efficacy. New England Journal of Medicine. 2008;358(3):252–260.
- 49. Ioannidis JP. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses.

 Milbank Q. 2016 Sep;94(3):485-514. doi: 10.1111/1468-0009.12210.

2021

© The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ready to submit your research? Choose RN and benefit from:

- Fast, convenient online submission.
- 4 Thorough peer review by experienced researchers in your field.
- Rapid publication on acceptance.
- Support for research data, including large and complex data types.
- Global attainment for your research.
- At RN, research is always in progress.
- **Learn more:** researchnovelty.com/submission.php

